
Software Engineering Challenges

for Parallel Processing Systems

Lt Col Marcus W Hervey, USAF

AFIT/CIP

marcus.hervey@us.af.mil

Disclaimer

"The views expressed in this presentation are

those of the author and do not reflect the

official policy or position of the United States

Air Force, Department of Defense, or the U.S.

Government."

Outline

• Motivation

• A Brief Overview of Parallel Computing

• Parallel Programming Challenges

• The Need for Parallel Software Engineering

• Research Directions

• Summary

From Moore’s to Cores

• Before sequential programs were made faster by running on

higher frequency computers without changes to the code

• Chip manufacturers ran into problem with continuing down

this path

– Heat generation

– Power consumption

• Redefined metric from processor speed to performance (# of

processors/cores)

• Today optimum performance will require significant code

changes with the knowledge to develop correct and efficient

parallel programs

What’s All the Fuss About?

Parallel Processing:

• Solves problems faster or solves larger problems
• More complex -- Must match best algorithm with best

programming model and best architecture

Matrix Multiply using OpenMP Jacobi using OpenMP

1

5

25

125

625

1 2 4 8 16

Execution Time

Sequential

OpenMP

1

2

4

8

16

32

64

128

256

1 2 4 8 16

Execution Time

Sequential

OpenMP

Applications of Parallel Computing

• Embedded Systems

– Cell phones, Automobiles, PDAs

• Gaming Systems

– Playstation 3, Xbox 360

• Desktop/Laptops

– Dual-core/Quad-core

• Supercomputing (HPC/HPTC/HEC)

– www.top500.org

Parallel Processing is mainstream!

Military Applications of

Parallel Computing

C4ISR

Automated

Information

Systems

Supercomputing

Gaming,

Training,

Simulation

Embedded

Systems

The New Frontier

• Standard Architectures

– Beowulf Clusters / Grid Computing

– Dual-core/Quad-core – Intel/AMD

– Intel’s 80-core machine

• Non-standard Architectures

– 72-core machine – Sicortex

– FPGAs - Field-programmable gate array

– GPGPUs – Nvidia, AMD (ATI)

– Cell Processor – IBM – Playstation 3

– Accelerators - Clearspeed

Parallel Processing Architectures

Distributed Memory

Shared Memory

Processor Processor Processor

Memory

ProcessorInterconnection

Network

Processor

Memory

Processor

Memory Processor

Memory

Processor

Memory
Processor

Memory

Processor

Memory

…there is also Distributed Shared Memory

Communicates by sending/receiving messages

• OpenMPI

• MPICH

Message Passing Model

Send

Receive

Receive

Send

Process 1 Process 2

Designed for Distributed Memory Machines

OpenMPI Code Example

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv) {

char buff[20]; int myrank;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

strcpy(buff, “Hello World!\n”);

MPI_Send(buff,20,MPI_CHAR,1,99,MPI_COMM_WORLD);

}

else {

MPI_Recv(buff,20,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);

printf(“received :%s:\n”, buff);

}

MPI_Finalize();

return 0;

}

Shared-Memory Model

Communicates by accessing shared memory

• OpenMP programming model

• POSIX Theads (Pthreads)

• Unified Parallel C

Fork Fork Fork

Join Join Join

Processor Memory Processor

Write data Read data

OpenMP Fork-join Pattern

OpenMP Code Example

#include<stdio.h>

int main(void)

{

printf(“Hello World!\n”);

return 0;

}

Without OpenMP

#include <stdio.h>

#include <omp.h>

int main(void)

{

int threadid = 0;

#pragma omp parallel private(threadid)

{

threadid = omp_get_thread_num();

printf(“%d : Hello World!\n”, threadid);

}

return 0;

}

With OpenMP

• Implemented as C/C++/Fortran language extensions

• Composed of compiler directives, user level runtime routines, environment variables

• Facilitates incremental parallelism

Pthreads Code Example
#include <stdio.h>

#include <pthread.h>

define NUM_THREADS 5

void *HelloWorld(void *threadid) {

printf(“%d : Hello World!\n”, threadid);

pthread_exit(NULL);

}

int main() {

pthread_t threads[NUM_THREADS];

int rc, t;

for (i=0; i<NUM_THREADS; i++) {

printf(“%d : Hello World!\n”, i);

rc = pthread_create(&threads[i], NULL, HelloWorld, (void *) t);

if (rc) {

printf(“ERROR; return code from pthread_create() is %d\n”, rc);

exit (-1);

}

}

pthread_exit(NULL);

}

UPC Code Example

#include<stdio.h>

int main(void)

{

printf(“Hello World!\n”);

return 0;

}

Without UPC

#include <stdio.h>

#include <upc.h>

int main(int argc, char *argv[])

{

int i;

for(i=0; i<THREADS; i++)

{

if (i==MYTHREAD)

{

printf(“%d : Hello World!\n”, MYTHREAD);

}

return 0;

}

With UPC

Major Parallel Programming Challenges

• Parallel Thinking/Design

– Identifying the parallelism

– Parallel algorithm development

• Correctness

– Characterizing parallel programming bugs

– Finding and removing parallel software defects

• Optimizing Performance

– Maximizing speedup and efficiency

• Managing software team dynamics

– Complex problems require large, dispersed, multi-disciplinary
teams

A Different Species of Bugs

• Data Races
– When an interleaving of threads results in an

undesired computation result

• Deadlock
– When two or more threads stop and wait for each other

• Priority Inversion
– A higher priority thread is preempted by a lower priority thread

• Livelock
– When two or more threads continue to execute, but make no

progress toward the ultimate goal

• Starvation
– When some thread gets deferred forever

Data Race Example
Without Synchronization With Synchronization

read count = 2

count + 2 = 4

write count = 4

Thread A Thread B

read count = 4

count + 2 = 6

write count = 6

read count = 2

count + 2 = 4

write count = 4

Thread A Thread B

read count = 2

count + 2 = 4

write count = 4

This type of error caused by Therac-25 radiation therapy machine resulted in 5 deaths

Data Race

Deadlock

PROCESS 1

Send (Processor 2)

Receive(Processor 2)

PROCESS 2

Send(Processor 1)

Receive(Processor 1)

worker () {

#pragma omp barrier

}

main () {

#pragma omp parallel sections

{

#pragma omp section

worker();

}
}

Waiting on Process 2

to receive message

Waiting on Process 1

to receive message

MPI
Example

OpenMP
Example

Synchronization Errors

Not Enough Too Much

Data Races Deadlock

• Missing or inappropriately applying synchronization

can cause data races

• Applying too much synchronization can cause

deadlock

Priority Inversion

• Lower priority thread preempts higher priority thread

– Low-priority thread enters critical section.

– High-priority thread wants to enter critical section, but

can’t enter until low-priority thread is complete.

– Medium-thread pre-empts higher priority thread

• This type of error caused Mars Pathfinder failure

M

H L

Parallel Performance

• Execution time

– Time when the last processor finishes its work

– Amdahl’s Law – Sequential portions of code limit speedup

• Most parallel codes have sequential portion(s)

• Speedup

– (1 CPU execution time)/ (P CPUs execution time)

– Must compare to the best sequential algorithm

• Efficiency

– Speedup/P

– 100% efficiency is hardly ever possible

Parallel Performance Metrics

For optimum performance, parallel developers need to have
an understanding of the application and the architecture

1

4

16

64

256

1 2 4 8 16

Execution Time

Sequential

OpenMP

Performance

of Jacobi

using OpenMP

1

2

4

8

16

32

64

1 2 4 8 16

Speedup

OpenMP

Expected

1

2

4

1 2 4 8 16

Efficiency

OpenMP

Expected

Parallel Software Quality Goals

• Correctness, Robustness and Reliability

• Performance

– Speedup, Efficiency, Scalability, Load Balance

• Predictability – Cost, Schedule, Performance

– Managing complexity of harder problems with

more non-standard architectures and more

diverse teams

• Maintainable

Lack of Parallel Software

The Need for Software Engineering

Source: [Hayes, Frank, “Chaos is Back,” Computerworld, November 8, 2004.]

Software engineering is needed to create an
environment for the development of quality parallel software

(reliable, predictable and maintainable)

Parallel Software Engineering

PeopleTechnology
Technical and ProcessTraining,

Discipline
Eclipse Parallel Tools Platform,

Thread Analyzer, Thread Checker,

DDT, Totalview

Quality

Parallel

Software

Process
Defined, Repeatable

Result : Predictable Cost, Schedule and Performance

Software Life Cycles

Requirements Analysis

Design

Parallel Implementation

Testing

Code Optimization

(Tuning)

Code Profiling

Sequential

Implementation

Requirements Analysis

Design

Implementation

Testing

Deployment

Deployment

Parallel

Development Methodology
Sequential

Development Methodology

Parallel Design

Patterns for Parallel Programs

• Decomposing the problem to

exploit concurrency

• Structuring the algorithm by tasks,

data decomposition or by flow of

data

• Defining the shared data structures

that support algorithm

implementation

• Implementing management,

communication and

synchronization

Finding Concurrency

Algorithm Structure

Supporting Structure

Implementation Mechanism

Source: [T. A. Mattson, B. Sanders and B. Massingill. Patterns for

Parallel Programming, 2004.]

Technology

• Parallel Languages

– OpenMPI, OpenMP, UPC, POSIX, X10, Fortress, Chapel

• Compilers

– Intel, Sun, Open64

• IDEs

– Eclipse Parallel Tools Platform

• Debugging Tools

– TotalView, DDT, Thread Checker, Thread Analyzer

• Performance Tools

– PAPI, TAU

People

• Understand standard/non-standard architectures

• Learn parallel programming/bug patterns

• Comprehend parallel language strengths/weaknesses

• Learn the process and tools

• Work within multi-disciplinary teams

Research Directions

• Exploiting Nonstandard Architectures
– Cell Processors, GPGPUs, FPGAs, accelerators

• Parallel Programming Models
– Extending existing languages C, C++, and Fortran
– New languages development: X10, Chapel, Fortress
– Hybrid code development (OpenMP/MPI)

• Parallel Compilers
– Code optimization and auto-parallelization

• Productivity Enhancing Tools
– IDEs, profiling, optimization and debugging tools

Resources

• B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT

Press, 2008.

• T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for

Parallel Programming. Addison-Wesley Professional, 2004.

• cOMPunity, www.compunity.org

• DoD HPCMO, www.hpcmo.hpc.mil

• HPC Bug Base, www.hpcbugbase.org

• HPC Tools Group, http://www2.cs.uh.edu/~hpctools/

• OpenMP, www.openmp.org

• OpenMPI, www.open-mpi.org

Summary

• Parallel computing is all around you!

• Parallel programming introduces more complex software defects

that are hard to detect and debug

• Parallel software performance requires attention to issues of

communications, synchronization, scalability and load balance

• Better processes, tools and training are needed to improve the

practice and predictability of parallel software engineering

• Software developers and acquisition personnel should be aware

of the opportunities and challenges of parallel software

For More Information

Lt Col Marcus W Hervey, USAF

AFIT/CIP

marcus.hervey@us.af.mil

www.marcushervey.com

Acronym List

• C4ISR – Command, Control, Communications, Computers,

Intelligence, Surveillance, and Reconnaissance

• DDT – Distributed Debugging Tool

• FPGA – Field Programmable Gate Array

• GPGPU – General Purpose Graphics Processing Unit

• HPC – High-Performance Computing

• IDE – Integrated Development Environment

• MPICH – Message Passing Interface Chameleon

• OpenMP – Open Mulit-Processing

• OpenMPI – Open Message Passing Interface

• PAPI – Performance Application Programming Interface

• TAU – Tuning and Analysis Utilities

• UPC – Unified Parallel C

